

AmpFLEX ${ }^{\text {TM }}$ Series

These flexible current probes are as equally at home measuring low AC currents of a few hundred mA's as they are measuring high currents of several tens of kA's.
Their main point of interest is their flexibility and the ease with which electrical conductors of all shapes and sizes (cables, bus bars) and degrees of accessibility can be gripped.
They have a number of other strong points; they are light weight (having no magnetic circuit), they do not suffer from the saturation effect and their high level of accuracy combined with minimal phase shift make them perfect for power measurement applications.
AmpFLEXA100 :

- The A100 (pictured above) has a flexible toroid which connects, via a screened lead, to a small
unit containing all the processing electronics and a standard 9 V battery.
The unit can be connected directly to any multimeter, wattmeter or recording device. With either one or two ranges, the A100's give an AC voltage output of $0.1-1-10$ or $100 \mathrm{mV} / \mathrm{A}$. As well as the standard models (48,80 , or 120 cm 's), there are also models available on request where you can choose the sensor length and sensitivity.

AmpFLEXA101:

- The A101 has exactly the same specification as the A100's but comes without the electronic unit. These sensors are thus used by other manufacturers and integrated into their own test and measurement products.

Flexible AC current probe
Model A100 20-200/2

Current	20 A AC	200 A AC
Ouput	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 20 A AC
0.5... 200 A AC

Output signal :
$100 \mathrm{mV} \mathrm{AC} / \mathrm{A} A C(2 \mathrm{~V}$ at 20 A$)$
10 mV AC/A AC (2 V at 200 A)
Accuracy (1):

Range	20 A		200 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 20 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 200 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 1.3^{\circ}$	$\leq 1.3^{\circ}$	$\leq 1.3^{\circ}$	$\leq 1.3^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . . .20 \mathrm{kHz}$

Crest factor :

2.25 at nominal current

Max. current / Max. output voltage :

No current limit, however maximum output is 4.5 V peak.
Load impedance $: \geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance :
$\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
20 A range : $\leq 50 \mathrm{mV}$ DC
200 A range : $\leq 5 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ interference current at 50 Hz
($\leq 2 \%$ near catch)
Influence of conductor position in the loop :
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape

Supply :

9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

$\geq 150 \mathrm{hrs}$ continuous
$\geq 1000 \times 1$ min measurements

Low Battery signal :

Green LED : battery is OK
Green LED flashes : battery nearly worn out
No green LED : battery totally worn out
Overload signal : red LED
Mechanical specifications
Working temperature :
-10° to $+55^{\circ} \mathrm{C}$, (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)
Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :
$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
for 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
$0 . . .2000 \mathrm{~m}$
Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)

Shock resistance :

100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$ 0.25 mm (IEC 68-2-6)

Self-extinguishing ability :
Case, flexible sensor and catch unit : UL94 Vo

Dimensions:

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$

Colours :

Case and connection lead : dark grey, red flexible sensor with dark grey catch unit
Output:
2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :

Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-11000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2:
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots . .100 \mathrm{~Hz}$

Ordering information	Reference
AmpFLEX ${ }^{\text {TM }} \mathbf{2 0 - 2 0 0 / 2 , ~ l e n g t h ~} 45 \mathrm{~cm}$ including user's manual	P01.1205.03

Flexible AC current probe Model A100 2000/2

Current	2000 A AC
Ouput	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 2000 A AC

Output signal :
1 mV AC/A AC (2 V at 2000 A)

Accuracy (1):

Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 2000 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$
Phase shift	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth range :

$10 \mathrm{~Hz} . .20 \mathrm{kHz}$

Crest factor :

2.25 at nominal current

Max. current / Max. output voltage : No current limit, however maximum output is 4.5 V peak.
Load impedance : $\geq 1 \mathrm{M} \Omega$
Influence of Z load impedance : $\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
$\leq 2 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz
($\leq 2 \%$ near catch)
Influence of conductor position in the loop :
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape
Supply :
9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

≥ 150 hrs continuous,
$\geq 1000 \times 1$ min measurements
Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out
No green LED : battery totally worn out
Overload signal : red LED

Mechanical specifications

Working temperature :

-10° to $+55^{\circ} \mathrm{C}$, (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :

$\leq 0.5 \%$ of output signal per 10 K

Operating humidity:

for 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
0... 2000 m

Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)
Shocks resistance :
100 g (IEC 68-2-27)

Vibrations :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$
0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit :
UL94 Vo

Dimensions :

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0,5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$

Colours :

Case and connection leads : dark grey, red flexible sensor with dark grey catch unit

Output :

2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :

Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-1-1000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2:
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots . .100 \mathrm{~Hz}$.

Ordering information	Reference
AmpFLEX ${ }^{\text {TM }}$ 2000/2, length 45 cm including user's manual	P01.1205.01
AmpFLEX	2000/2, length 80 cm including user's manual

Flexible AC current probe
Model A100 200-2000/2

Current	200 A AC	2000 A AC
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 200 A AC
0.5... 2000 A AC

Output signal :
10 mV AC/A AC (2V at 200 A)
1 mV AC/A AC (2 V at 2000 A)
Accuracy (1):

Range	200 A		2000 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 200 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 2000 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . .20 \mathrm{kHz}$

Crest factor :

2.25 at nominal current

Max. current / Max. output voltage : No current limit, however maximum output is 4.5 V peak.
Load impedance : $\geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance : $\leq 0.1 \% / Z$, (in $M \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
200 A range : $\leq 5 \mathrm{mV}$ DC
2000 A range $: \leq 2 \mathrm{mV}$ DC

Working voltage :

1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz ($\leq 2 \%$ near catch)
Influence of conductor position in the loop:
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape
Supply :
9 V alkaline battery (NEDA 1604A, IEC
6LR61)

Battery life :

≥ 150 hrs continuous,
$\geq 1000 \times 1$ min measurements

Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out
No green LED : battery totally worn out
Overload signal : red LED
Mechanical specifications
Working temperature :
-10° to $+55^{\circ} \mathrm{C}$ (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :
$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
fro 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
<0.2\% of output signal from 10% to 85% of RH
Operating altitude :
$0 . . .2000 \mathrm{~m}$
Casing protection :
Case: IP 40 (IEC 529)
Flexible sensor: IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$
0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit :
UL94 V0

Dimensions :

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0,5 \mathrm{~mm}$
Weight :
Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$

Colours :

Case and connection leads : dark grey, red flexible sensor with dark grey catch unit
Output :
2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :
Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-1-1000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2 :
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots 100 \mathrm{~Hz}$

Ordering information	Reference
AmpFLEX	
AmpFLEX ${ }^{\text {TM }}$ 200-2000/2, length 45 cm including user's manual	P01.1205.04

Flexible AC current probe
Model A100 300-3000/3

Current	300 A AC	3000 A AC
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 300 A AC
0.5... 3000 A AC

Output signal :
$10 \mathrm{mV} \mathrm{AC} / \mathrm{A} \mathrm{AC}(3 \mathrm{~V}$ at 300 A$)$
1 mV AC/A AC (3 V at 3000 A)
Accuracy (1):

Range	300 A		3000 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 300 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 3000 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . .20 \mathrm{kHz}$

Crest factor :

1.5 nominal current

Max. current / Max. output voltage :
No current limit, however maximum output is 4.5 V peak.
Load impedance : $\geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance :
$\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
300 A range : $\leq 5 \mathrm{mV}$ DC
3000 A range : $\leq 2 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Common mode voltage :
600 V for category III installations and pollution level 2
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz
($\leq 2 \%$ near catch)
Influence of conductor position in the loop :
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape

Supply :

9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

$\geq 150 \mathrm{hrs}$ continuous,
$\geq 1000 \times 1$ min measurements
Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out No green LED : battery totally worn out
Overload signal : red LED

Mechanical specifications

Working temperature :

-10° to $+55^{\circ} \mathrm{C}$, (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :

$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
from 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$

Influence of humidity :

$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
0... 2000 m

Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$ 0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit : UL94 V0

Dimensions :

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$
Colours :
Case and connection leads : dark grey, red flexible sensor with dark grey catch unit

Output :

2 safety jacks (4mm) spacing 19 mm

Safety specifications

Electrical :
Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-
1-1000V category III, pollution 2
Electromagnetic compatibility

(EMC Mark) :

EN 50081-1 : in conformity
EN 50082-2 :
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

Ordering information	Reference
AmpFLEX ${ }^{\text {TM }} \mathbf{3 0 0 - 3 0 0 0 / 3}$, length 45 cm including user's manual	P01.1205.06
AmpFLEX ${ }^{\text {TM }} 300-3000 / 3$, length 80 cm including user's manual	P01.1205.07
AmpFLEX ${ }^{\text {TM }} \mathbf{3 0 0 - 3 0 0 0 / 3}$, length 120 cm including user's manual	P01.1205.08

Flexible AC current probe
Model A100 1000-10000/1

Electrical specifications

Current range :
0.5... 1000 A AC
0.5... 10000 A AC

Output signal :
1 mV AC/A AC (1 V at 1000 A)
0.1 mV AC/A AC (1 V at 10000 A)

Accuracy (1):

Range	1000 A		10000 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 1000 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 10000 \mathrm{~A}$
$\%$ accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . . .[45 . . .65]$... 20 kHz
Crest factor :
4.5 nominal current

Max. currents / Max. output voltage : No current limit, however maximum output is 4.5 V peak.
Load impedance $: \geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance : $\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance : $1 \mathrm{k} \Omega$
DC voltage gap at output :
1000 A range : $\leq 2 \mathrm{mV}$ DC
10000 A range : $\leq 1 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz
($\leq 2 \%$ near cath)
Influence of conductor position in the loop :
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape
Supply :
9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

≥ 150 hrs continuous operating,
$\geq 1000 \times 1$ min measurements

Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out No green LED : battery totally worn out
Overload signal : red LED

Mechanical specifications

Working temperature :

-10° to $+55^{\circ} \mathrm{C}$ (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :

$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
from 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
<0.2\% of output signal from 10% to 85% of RH
Operating altitude :
0... 2000 m

Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)

Shock resistance :

100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$
0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit :
UL94 V0
Dimensions:
Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$
Colours :
Case and connection leads : dark grey, red flexible sensor with dark grey catch unit
Output:
2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :

Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-
1-1000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2 :
Electrostatic discharge : IEC 1000-4-2
Radiated field: IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots 100 \mathrm{~Hz}$

Ordering information	Reference
AmpFLEX ${ }^{\text {T }} \mathbf{1 0 0 0 - 1 0 0 0 0 / 1 , ~ l e n g t h ~} 120 \mathrm{~cm}$ including user's manual	P01.1205.09

Flexible AC current probe
Model A100 on request

To complete the whole range of standard models presented in the preceding pages, CHAUVIN ARNOUX also offers to make special models to meet your particular needs.
To do so, it is necessary to give a reference as follows :

A 1	0	0

A

| B | B | B |
| :--- | :--- | :--- | \qquad D D D

with :
A : Number of ranges
BBB : Max. range value, in Amperes
CCC : Max. range sensitivity in mV / A
DDD : Length of flexible sensor in $\mathrm{cm}(\min \times 40=40 \mathrm{~cm}, \max =990 \mathrm{~cm})$ for a section of 10 cm

Currently available values :

Model
$20-200 \mathrm{~A} / 2 \mathrm{~V}$
$2000 \mathrm{~A} / 2 \mathrm{~V}$
$200-2000 \mathrm{~A} / 2 \mathrm{~V}$
$300-3000 \mathrm{~A} / 3 \mathrm{~V}$
$1000-10000 \mathrm{~A} / 1 \mathrm{~V}$

	1	0	A
A	1	0	2
	1	0	1
	1	0	2
	1	0	2
	1	0	2

B	\mathbf{B}	\mathbf{B}
2	0	0
2	K	0
2	K	0
3	K	0
1	0	K

\mathbf{c}	\mathbf{c}	\mathbf{c}
X	1	0
X	X	1
X	X	1
X	X	1
0	.	1

D D D

Example 1:

A flexible sensor AmpFLEX A100, with 2 ranges 200-2000A and length $5 \mathbf{m}$ would be represented by :

Example 2 :
A flexible sensor AmpFLEX, range 2000 A length 90 cm would be represented by :

As Chauvin Arnoux is always wishing to improve its products, do not hesitate to contact us for other configurations.

Flexible AC current probe Model A101

The AmpFLEX offers perfect linearity, low phase shift, a wide range of measurements (up to several $k A$) together with unrivalled ease of use.

The A101 series is Chauvin Arnoux's response to all the measurement instrument manufacturers wishing to integrate AmpFLEX solutions into their product lines.

Description

The A101 AmpFLEX sensor is composed of an active element (Rogowski coil) and a connection lead

It is necessary to add on an electronic processing system (not included), in order to complete this measurement device

Chauvin Arnoux has added an extra step to the manufacturing process of the A101 probe which guarantees their interchangeability. This is essential in applications such as three-phase measurements where several identical probes are used.

Electrical specifications

Voltage at sensor terminals :
$46 \mu \mathrm{~V} / \mathrm{A}(-15 \% \ldots+10 \%)$ at 50 Hz
Linearity * : < 0.3\%
Phase shift * $: \leq 0.5^{\circ}$ at 50 Hz
Error of interchangeability :
$\leq 0.5 \%$ (maximum error between 2 sensors for the same measurement point).

Frequency range

Depends on the electronics with which it is used.
Working voltage : 1000 Vrms or DC

Mechanical specifications

Operating temperature :
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature :
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Max temperature of measured cable : $\leq 90^{\circ} \mathrm{C}$

Operating altitude :
0... 2000 m

Maximum conductor size :
Depending on sensor length.
Casing protection :
IP65 EN 60529

Self-extinguishing ability :

External cover, catch unit, connection lead : UL94 V0

Dimensions:

Sensor Ø : 12 mm

Weight :

Approx. 30 g per 10 cm length

Colours:

Sensor: Red
Catch unit : dark grey

Output:

According to configuration (refer to § Connections)
Connections :
According to configuration (refer to § Connections)

[^0]
Configurations

- Category (fixed field)

Level 1

- Lead length in decimetres

Min value : $\mathbf{0 5}(50 \mathrm{~cm})$
Max value : 99 (9.9 m)
Increment per 1 dm section (10 cm)
■ Length of connection lead in decimetres
Min value : 05 (50 cm)
Max value : 99 ($9,9 \mathrm{~m}$)
Increment per section of $1 \mathrm{dm}(10 \mathrm{~cm})$
■ Measurement range (refer to additional information)
1 : electronic diagram CA1
2 : electronic diagram CA2
3 : electronic diagram CA3
4 : diagram suited for C.A 8310

- Connections

\mathbf{X} : lead without connection unit
C : specific lead
■ Calibration for interchangeability (refer to additional information)
N : without
O : with

- Special feature

X1 : plain sensor without CHAUVIN ARNOUX logo, with norms and AmpFLEX ${ }^{T M}$ inscriptions, plain packing with instruction manual.
X2 : plain sensor without CHAUVIN ARNOUX logo, with norms and AmpFLEX ${ }^{T M}$ inscriptions, plastic bag packing, instruction manual stapled on the plastic bag.
C1 : same as CHAUVIN ARNOUX sensor plain packing box with instruction manual
C2 : same as CHAUVIN ARNOUX sensor plastic bag packing, instruction manual stapled on the plastic bag.

Level 2

■ Connections (refer to additional information)
XXX1 : circular lead 2 conductors + bare and tinned
BNC1 : coaxial lead + insulated coaxial plug
FRB1 : circular lead 2 conductors + screening with FRB connector D01 model, type 1 (male pins)
FRB2 : circular lead 2 conductors + screening with FRB connector D01 model, type 2 (sockets)

■ Colour of connector(refer to additional information)
XX : no connector
BK : black
RD : red
BU : blue
GN : green
WH : white
YE : yellow
■ + connection point
1, 2 or 3 : contact N° connected to +
X : no connector

- - connection point

1, 2 or 3 : contact N° connected to -
X : no connector
\square connected protection
1,2 or 3 : contact N° connected to screening
X : not connected or no connector
■ Interchangeability resistors (refer to additional information)
I : included in sensor
F : resistors supplied
D: values are indicated in the manual included with AmpFLEX (resistors not supplied)
X : no calibration for interchangeability

Specific configuration of sensors for C.A 8310 Power \& Harmonics Analyser

To complete the range of standard sensors for this product, A190 sensors of different lengths can be used (A190 is an A101 special feature).

Select :

Blank spaces are refer to :

- level 1 : sensor lengths and connection lead to be chosen
- level 2 : colour of connector

Additional information

- Measurement range (electronic diagram)

Choosing the measurement range depends on sensitivity required and on electronic supply voltages.
Example : For a supply voltage of $\pm 5 \mathrm{~V}$, electronic output voltage will be limited to $\pm 4.5 \mathrm{~V}$ peak to peak, that is to say approximately 3 V RMS (4.5 $\mathrm{V} / \sqrt{2}$) if measured signal is sinusoidal.
The different diagrams refer to sensitivity ranges according to the following chart :

Diagram	CA1	CA2	CA3
Sensitivity Max. measurement range for $\mathrm{a} \pm 5 \mathrm{~V}$ supply Max. measurement range for $\mathrm{a} \pm 15 \mathrm{~V}$ supply $9.1 \mathrm{mV} / \mathrm{A} \ldots 1 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A} \ldots . .10 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A} \ldots 100 \mathrm{mV} / \mathrm{A}$	

■ Interchangeability calibration

For applications that require the use of several sensors, it is necessary to ensure that all the sensors used on a single measuring instrument have identical output specifications.
Calibration is carried out for a standard electronic circuit (refer to following chart) at input level (integrator).

Combined electronic

Is the standard diagrams of input level, referring to the different measurement ranges required.

Resistors and integrator condenser value according to sensitivity

Diagram	CA1	CA2	CA3
Sensitivity	$0.1 \mathrm{mV} / \mathrm{A}$ to $1 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$ to $10 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$ to $100 \mathrm{mV} / \mathrm{A}$
C 1	100 nF	10 nF	1 nF
$\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3$		$4.12 \mathrm{k} \Omega$	

C1 preferably in polycarbonate (tolerance 5\%).
R1, R2 and R3 metallic coating, tolerance 1%, power $1 / 8 \mathrm{~W}$ temperature 50 ppm.
Standard technology or CMS.

- Connections

Connector		Connections selection	Colour of the connector
BNC1 Coaxial leads + insulated coaxial plug			BK : black RD : red ${ }^{(1)}$ BU : blue
FRB1: FRB D01 model Contact : male FRB2 : FRB D01 model Contact : female		$\bullet_{3} \bullet_{2}$	BK : black RD : red BU : blue GN : green ${ }^{(1)}$ WH: white YE :yellow ${ }^{(1)}$

${ }^{(1)}$ colour not in stock

- Interchangeability resistors

In order to enable interchangeability of sensors, the calibration process consists of : defining a value of a resistor which will be put in the measurement circuit.
In fact, this (or these) resistors can be integrated into connectors FRB1 or FRB2.
Contact us for details of other types of connectors.

Ordering information	Reference
A101 AmpFLEX without electronic unit	Contact us
Accessories :	
"Green" catches (set of 10)	P01.1019.21
""Red" catches (set of 10)	P01.1019.22
"Purple" cathes (set of 10)	P01.1019.23
"Black" catches (set of 10)	P01.1019.24
"Blue" catches set of 10)	P01.1019.25
"Brow" " catches (set of 10)	P01.1019.26
"White" catches (set of f 10)	P01.1019.27
"Grey" catches (set of 10)	P01.1019.28
9 assorted colours (9 sets of 2)	P01.1019.29
Coloured catches C.A 8310 ("blue", "red", "black" set of 2)	P01.1019.30

[^0]: * Reference conditions : $23^{\circ} \mathrm{C} \pm 6 \mathrm{~K}, 20$ to $75 \% \mathrm{RH}$, frequency 10 Hz to 100 Hz , sinusoidal signal, no external AC magnetic field, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$ (earth field) tested sample centered.

